
Lo)
0
MSponsored

by

Defense Advanced Research Projects Agency (DoD)

Defense Small Business Innovation Research Program

Highly Parallel Iterative Methods
for Massively Parallel Multiprocessors

ARPA Order No.

Issued by U.S. Army Missile Command Under

Contract No. DAAII01-88-C-0409

Approved for public release; distribution unlimited.

Scientific Computing Associates, Inc.
246 Church Street, Suite 307

New Haven, CT 06510

DTIC
Effective Date of Contract: 01 September 1988

Contract Expiration Date: 28 February 1989
Reporting Period: 01 September 1988 to 18 February 1989
Principal Investigator: Dr. David E. Foulser H
Telephone: (203) 777-7442
Short Title: Iterative Methods for the Connection Machine

S9 J

DISCLAIMER

The views and conclusions contained in this document are those of the authors and shoutld
not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

DESTRUCTION NOTICE

Follow the procedures delineated in paragraph 19 of Industrial Security Manual,
DoD 5220.22-M.

CERTIFICATION OF TECHNCIAL DATA CONFORMITY

The Contractor, Scientific Computing Associates, Inc., hereby certifies that, to the best of its
knowledge and belief, the technical data delivered herewith under Contract No. DAAII01-88-C-
0409 is complete, accurate, and complies with all requirements of the contract.

Date: February 28, 1989

Name and Title of Certifying Official:

44-

Highly Parallel Iterative Methods for
Massively Parallel Multlproco'asors

Final Report on Phase I Research

1. Abstract

In the Phase I work presented here, we developed computer programs for the Con-
nection Machine (a CM-2) to compute sparse matrix-vector multiplies, sparse triangular
solves, and inner-products. These subproblems constitute the iterative portion of Krylov
space methods that use incompletely factored preconditioning matrices to solve very large
sparse linear systems. The numerical solution of such systems is very often the compute-
intensive kernel of the kind of large scale engineering and scientific computations that are
commonly done on supercomputers. Moreover, Krylov space methods which are precon-
ditioned by appropriate incompletely factored matrices are generally recognized as the
algorithms of choice in terms of minimizing the number of floating point operations re-
quired for solving such problems.

We performed a variety of benchmarks on large three-dimensional model problems
over cube-shaped domains discretized with a seven point template. The highest computa-
tional rate we were able to achieve for the sparse triangular solve was 13.1 MFlops on 4K
processors; this would correspond to a timing of 210 MFlops on an appropriately scaled
problem on a 64K processor machine. The highest computational speed we achieved for
a matrix vector multiply was 64.2 MFlops, this would correspond to to a speed of 1027.0
MFlops on a 64K processor machine. We compared the computational speed obtated
from the CM-2 with that obtained from equivalent highly-optimized code on a single head
of a Cray X/MP. For all three computational kernels the projected speeds on a full 64K
processor machine exceed the Cray X/MP speeds by a factor of at least 5 to 6. Thus for
regularly-structured problems, the CM-2 achieves impressive computational speeds. When
one takes into account the price differential between these two-systems, one realize, that
the price-performance advantage for the CM-2 over a single-headed Cray X/MP is truly
outstanding.

The timings on the CM-2 were highly dependent upon the use of our very specialized
programs. These programs mapped the problem domain onto the processor topology very
carefully and used the optimized local NEWS communications network. We explored the
consequences of relaxing these restrictions in a variety of ways. Performance degraded
very significantly as we abandoned the optimized NEWS communications network and
abandoned the careful mapping of a problem domain to the CM-2 processor topology. In
some cases we noted 20 to 75 fold degradations in performance as these constraints were
relaxed.

Scientific Computing Associates

2. Overview

There are at least two-critical components required to obtain extremely fast methods
for solving linear systems. One is the use of efficient and robust numerical algorithms,
and the other is the employment of effective techniques for delivering a large amount of
computing power. These requirements can conflict with one another in a variety of ways.
Many modern methods of solving reasonably general classes of linear systems involve a
degree of implicitness; this implicitness can limit the amount of available concurrency.

When Krylov space linear solvers are used, the choice of preconditioner can play a
major role in determining the operation count of the resulting algorithm [7, 10, 11, 121.
Unfortunately, some of the most powerful preconditioners are obtained by using incom-
pletely factored matrices. To apply these preconditioners, we mut repeatedly solve sparse
triangular systems. The efficiency with which such solutions could he carried out was
characterize(] by Saad an-! Schuitz. [141. Sparse triangular systems arising from a range
of problems have been solved efficiently on a number of shared memory architectures [11,
[31, 41, [9]. Because data dependencies limit the ctcurre,,cy available from a sparse tri-
angular solve, it has not been clear that triangular soives could be employed usefully in
programs written for massively parallel architectures. One goal of our study was to de-
termine whether one could realistically hope to take advantage of incompletely factored
matrices as preconditioners for solving sparse linear systems on massively parallel archi-
tectures such as the CM-2.

Several other researchers have addressed the relative utility of various forms of pre-
conditioning on the CM-2. Both (8] and [13] concluded that it was not worthwhile to pre-
condition using incompletely factored matrices when solving linear systems arising from
two-dimensional partial differential equations on massively parallel machines such as the
CM-2. We concentrated our efforts on a simple three-dimensional model problem because
of the greater parallelism found in the sparse triangular solve.

Preconditioning based on polynomials often has been suggested as a alternate precon-
ditioning that is highly parallel. While such preconditioners may achieve high computation
rates, the overall picture is not clear since they often require more iterations. One goal
of our study was to consider whether the faster computation rate of a polynomial precon-
ditioner on a massively parallel machine such as the CM-2 would overcome the greater
number of iterations required to converge to a solution.

In the work described in this Phase I final report, we have carefully examined a set
of model problems and, under the appropriate circumstances, we are able to obtain sur-
prisingly good performance on key computational kernels including the sparse triangular
solves used for preconditioning in Krylov space solvers. To put our results in perspective,
we compared our measured ani projected computational speeds with results from experi-
ments on a single head of a Cray X/MP. We concluded that for selected problems, a 64K
processor CM-2 could outperform an analogously well-tuned program run on a single head
of a Cray X/MP by at least a factor of 5 in performing the sparse triangular solves and
the matrix vector multiplies required in the Krylov solver inner loop.

Efficient methods for solving partial differential equations frequently make use of non-
uniform grids designed to put the most computational effort where the problem is hardest.
An effect of this approach is that the algebraic linear (and non-linear) systems that must

2

Scientifie Computing Aasociato.s

eventually be solved are sparse and quite irregular in structure. Careful mapping of work-
load can be extremely important in obtaining adequate performance from nultiprocessor
architectures with strong memory hierarchies; mapping is typically straightforward in very
regular problems with a known structure and is much more problematic for problems with
unknown or irregular structures.

Another goal of our Phase I research was to quantify the degree to which performance
on a mach.ne such asq the CM-2 depends on exploiting regularities in problem structure. We
will present a number of timings on the CM-2 for sparse matrix vector multiplies, sparse
triangular solves and inner products, which show that obtaining good performance on the
CM-2 is critically dependent on the use of very well-tuned special-purpose computational
kernels. We have described a number of experimental results arising from our invest i-tions

in [5] and 16].
In Section 3, we present what we regard as best case timings for the sparse matrix

vector multiplies, sparse triangular solves, inner products and SAXPYs that can constitute
the iterative portion of Krylov-based programs. The timings show that for large three-
dimensional problems, good performance can be obtained from sparse triangular solves.
In Section 4, we demonstrate that performance on the CM-2 is an extremely sensitive
function of 1) problem mapping and 2) a priori knowledge of dependency patterns. We
will show that this performance sensitivity shows up very strongiy not only in the sparse
triangular solves but also in the sparse matrix vector multiply.

3

Scientific Computing Assoct'ates

3. Performance on a Regular Three-Dimensional Mesh

In this section we describe the results of experiments that give a best case estimate of

the rate with which the CM-2 can carry out the portions of Krylov space linear equation

solvers. We will first present timings from consecutive sweeps over a three-dimensional

mei along with timings for the corresponding inner products and SAXPYs. ''he perfor-

mance measurements we obtain here characterize the performance that would arise from

the iterative portions of linear solvers employing many simple preconditioners. We will

then present timing results from a program that performs a sequence of linked matrix

vector multiplies and triangular solves. We argue that the matrix vector multiply and

triangular solve timings obtained from this benchmark are a fair measure of the timings

that would be observed from these procedures were they integrated into an iterative loop

of the appropriately preconditioned Krylov solver. As part of this test loop, we also mea-

sured the time required to perform inner products in a manner that conformed with data

structures and the mapping used for the other two procedures.
The software provided with the CM-2 makes use of the concept of virtual prwe.qsors;

one can program the CM-2 so tbht it appears that there are a larger number of processors

than actually exist. The CM-2 ooftware assigns blocks of virtual processors to each real
processor. This assignment of multiple virtual processors to each real processor tends to
amortize the overhead of transmitting each instruction to the physical processors. In most
of the problems we investigated in Phase I, increasing the ratio of virtual to real processors
:cJaced overheads due to communication.

3.1. Mesh Sweeps
One can use a very large number of virtual processors in implementing a sparse matrix

vector multiply. We examined the performance of a very specialized PARIS program
(PARIS is the CM-2 assembly language) which was written for a three-dimensional problem
on a cube with a seven-point operator. The program consisted of a sequence of sweeps
over a three-dimensional mesh. The mesh was embedded into a cube of virtual processors
with one mesh point assigned to a virtual processor. The cube of virtual processors used
by the program has an edge size equal to a power of two. Subject to this constraint,
the largest mesh we could embed was one with an edge size of 64. Each iteration of the
1000 carried out took an average of 49 milliseconds. This corresponds to a speed of 64.2
MFlops on the 4K processors. With an appropriately scaled problem, one might expect
to obtain 1027.0 MFlops on a 64K processor machine (appropriately scaled means keeping
the virtual processor ratio fixed). The results obtained from timings for meshes of varying
sizes on 4K processors are shown in Table 1.

In Table 1 we also depict measurements obtained from SAXPYs and inner products
over three-dimensional domains. All of these results were obtained by timing 100,000 con-
secutive iterations. Because SAXPYs do not require communication, we expect to obtain
extremely high performance. For SAXPYs carried out over a cube of virtual processors
with edge size 128, we obtained a speed on 4K processors of 235.0 MFlops, which would
correspond to 3760 MFlops on a 64K processor machine. The eMciency with which SAX-
PYs are performed decreases when one uses fewer virtual processors. A cube with edge
size 16 has one virtual processor for each actual processor. Frrcm T-,' 1-I ,,e sft that the
speed of this cornpitation decreases to 131.0 MFlops - note that this reduction in speed

4

Scientific Computing Associates

Grid MVM SAXPY Inner i'rodulct
Size MFlops MFlops MFlopi
edge

16 23.5 131.0 14.6
32 46.1 226.0 81.3
64 64.2 233.9 185.8
128 N.A. 235.0 220.9

Table 1: Three-Dimensional Embedding
Mesh Sweeps, Inner Products, SAXPYs
4K processors

must be unrelated to communication overhead. In Table 1, we also present timings for
inner products carried out over a cube of virtual processors with varying edge size.

3.2. Performance from Iterative Loops with Triangular Solves
We next present timing results from a program that performs a sequence of linked

matrix vector multiplies and triangular solves. Let M represent a matrix obtained from
the uniform discretization of a cube with a seven point template and let L represent a
lower triangular matrix with the same sparsity structure as M. We carried out the test
calculation depicted in the program below.

do 100 times

Mx = y
Solve Lx = y
z -= inner-product(y.y)

end do

This program carried out the matrix vector multiply Mr = y by sweeping over a
three-dimensional mesh. We embedded the three-dimensional mesh into a two-dimenqional
gray-coded processor lattice. The sparse lower triangular system of equations Lz = y was
then solved by sweeping over another three-dimensional mesh, embedded in a conforming

5

Scientific Computig Associates

fashion into the same two-dimensional processor lattice. The sweep used to solve the

sparse triangular system was carried out in a manner that respected the dependencies of
the problem. As part of the test loop, we also measured the time required to perform inner

products in a manner that conformed with data structures and the mapping used for the

other two procedures.
We now describe in more detail how the triangular solve was carried out. In a cube

with n points along any edge, i,j,k between 1 and n are use(d to define the position of

a point in the cube where i,j,k represent the cartesian coordinates of a point in the 3-1)
mesh. We can parallelize this three-dimensional triangular solve by concurrently solving,
for each consecutive v, the plane of points satisfying the condition i I- j k - v for

1 < v < 3 - 2. Each processor in the lattice contained, for a given i and j, variables
corresponding to values of k between 1 and n.

Table 2 depicts the timings obtained for various size domains for 4K processors, tim-
ings from 100 iterations were averaged. The timings obtained from the cribe with e(lge
sizes 128 and 64 corresponded to 188.9 and 104.9 MFlops respectively for the inner prod-
uct, 52.6 and 27.1 MFlops respectively for the matrix vector product and 13.1 and 7.0
MFlops respectively for the triangular solve. From the above req,lts we conclude that for
an appropriately scaled problem on 64K processors, the fastest results we could obtain for
the inner product, matrix vector multiply and triangular solve would be 3022 MFlops, 842
MFlops and 210 MFIops respectively.

Grid Inner Matrix Triangular Total
Edge Product Vector Solve Time
Size (fis) (mm) _ _ s) I ,, I

16 1.5 29.0 51.9 81.3
32 2.8 6.7 106.8 162.4
48 3.8 78.4 169.1 240.6
64 5.0 115.9 225.7 321.
128 22.2 478.3 960.1 1511.5

Tble : Matrix Vector Multiply, Triangular Solve, Inner Product
Optimized
4K processors

6

Scie itific Computing Aqsociates

We were able to prevent the need to move data when we follow,,d the the matrix
vector multiply by a sparse triangular solve because of the way in which we assigned data
to processors. This method of data assignment did have the side effect of requiring us to
perform the sparse matrix vector multiply in n consecutive phases. As one might expect,
the use of this embedding can be seen to exact a performance penalty when compared to
the embedding discussed in Section 3.1. For example we attained a computational speed of
64.2 MFops for the problem with edge size 64. In Section 3.1, we attain a computational
speed of only 27.1 MFlops with the embedding discussed in this section. The conforming
inner product alqo had to be performed in n consecutive phases.

3.3. Comparison with Cray Timings
To at the CM-2 timings presented above into perspective we will present timiipg from

a single head of a Cray X/MP for triangular solves and matrix vector multiplies arising from
problems with the same structure as the problem we presented above. We used PC(GIPAK*,
a commercially available Krylov space solver that handles general sparse matrices. III this
program, the computation of the matrix vector multipiy and triangular solve in the iterative
loop were vectorized using Cray Assembly Language (CAL). Computational speeds of 24
MFlops and 22 MFlops were obtained when performing matrix vector multiplies that, arose
from meshes with edge sizes 20 and 30 respectively. Note that the speed of the Cray did
not increase with increasing problem size; on a vector machine such as the Cray X/MP,
the computational rate depends chiefly on the problems structure rather than its size. fly
using a more specia!ized data structure that was well suited for vectorization, Ashcraft and
Grimes [2] report speeds of 150 MFlops on a single head of an Cray X/MP for a matrix
vector product. The speed of the matrix vector multiply in the largest problem described
in Section 3.2 was 52.6 MFiops for the 4K processor machine. This speed should increase
to 842 MFlops in a 64K processor machine on an appropriately scaled problem.

The tridngu!ar solve comparisons were also very favorable. For meshes with edge sizes
of 20 and 30 a single head of an X/MP we achieved computational rates of 13 and 12 MFIops
respectively using PCGPAK. Ashcraft and Grimes 12] report speeds of 25-40 MFlops on
triangular solves in problems with the same structure; again their higher computational
rates were achieved through the use of specialized data structures. The co jthILtional
speed achieved by the largest problem described in Section 3.2 was 13.1 MFlop.q, which
should increase to 210 MFlops in a full 64K machine for an appropriately scaled problem.

3-.4. Summary of Performance on a Regular Three-Dimensional Mesh
The benchmarks described in this section imply that one can achieve respectable

performance when one is able to make use of a highly tuned, special purpose PARIS
program for carrying out the iterative portion of a large three-dimensional crniputation.
Our experiences with the higher level languages *lisp and *C were less satisfactory. For
instance, our *lisp versions of the sparse triangular solve described above required a factor
of 20 more time to run than did the PARIS version.

3.5. Polynomial Preconditioning
The relatively slow F,ceds of the gcneral router on the connection machine, as well a.

the relatively small parallelism in incomplete factorizations done in a fully "data-parallel"

*PCOPAK is a registered trademark of Scientific Computing Asencintef, Inc., New Haven, CT

7

Scientifie Computing Associates

Test GMRES Number of
Problem (K) Iterations

SI1E1 100 718
SPE2 100 > 2000
SPE3 100 > 2000
SPE4 100 120
SPE5 100 > 20Wo
5-pt 100 265

9-pt 100 140
7-pt 100 86

L9-pt 100 403
L7-pt 50 263

Table 3: Observed iteration counts for a selection of
test problems using no preconditioning in the GMRES
method.

way suggest that one may do better by using simpler preconditioners that vectorize well.
An obvious choice for such a preconditioners is a polynomial preconditioner since it can
be computed with highly parallel matrix vector products.

Because the particular choice of polynomial can have a significant effect on the ef-
fectiveness of the preconditioner, we looked instead at the performance of the GMRES
method with no preconditioner but with a large number of "direction vectors." Roughly,
the GMRES method minimizes the residual over combinations of A'x for i - 0,. . . , -

and hence in some measure uses in d iterations the best possible polynomial of degree d.
The test problems included the usual 5- and 9-point two-dimensional model problems, a
7-point three-dimensional model problem, and a set of "real-world" problems (the SPE
set). By comparing results using GMRES with many direction vectors (large k) with GM-
RES with incomplete factorizations, we can estimate the number of additional iterations
that a polynomial preconditioning would take (divide the number of iterations of GMRES
without preconditioning by the degree of the polynomial to get an estimate of the number
of itcrations with polynomial preconditioning).

From our results, we can estimate the relative cost between using a highly parallel
polynomial preconditioning and a less parallel but more effective incomplete factorization.

3.6. Brief I)escriptlon of the Test Problen
In this section, we present the eight test probitns used in oir experiments.

Problem I This problem models the pressure equation in a sequential black oil simulation.
(SPEI) The grid is 10 x 10 x 10 with one unknown per gridpoint for a total of 1000

unknowns.

Problem 2 This problem arises from the thermal simulation of a steam injection process.
(SPE2) The grid is 6 x 6 x 5 with 6 unknowns per grid point giving 1080 unknowns.

The matrix is a block seven point operator with 6 x 6 blocks.

Scientific Computing Asociates
'Test GiES Precond itioiing Numher of

Problem (K) iterations

SPEI 1 IItJ(O) 70
SPE2 1 ILJ(0) 23
SPE3 10 MI, U(0) 51
SPE4 10 ILU(0) 39
SPE5 20 IIU(O) 104
5-pt 5 MILUi(o) 44

9-pt 10 IIU(2) 47
7-pt 1 ILU(0) 39

1,9-pt 10 80U(1) 80
L7-pt 1 ILU(0) 31

Table 4: Observed iteration counts for a selection of test
problems using incomplete factori7ation preconditioners
in the GMRES method.

Problem 3 This problem comes from an IMPES simulation of a black oil model. The
(SPE3) matrix is a seven point operator on a 35 x l Ix 13 grid yielding 5005 equations.

Problem 4 This problem also comes from an IMPES simulation of a black oil model. The
(SPE4) matrix is a seven point operator on a 16 x 23 x 3 grid giving 1104 equations.

Problem 5 This problem arises from a fully-implicit, simultaneous solution simulation of
(SPES) a black oil mndel. It is a block seven point operator on a 16 x 23 x 3 grid

with 3 x 3 blocks yielding 3312 equations.

Problem 6 This problem is a five point central difference discretization of the following
(5-Pt) equation on the unit square:

O -xu) - y C1 u) + 2(x + y)(u +9y + (2- 1 U y f

with I)irichlet boundary conditions and f chosen so that the exact solution is

U = e # T sin(irz) sin(7ry).

The discretization grid is 63 x 63 giving 3969 unknowns. The 1,5-pt problem
is the same problem with a 200 x 200 grid.

9

Scientific Computing Associates

Problem 7 This problem is a nine point box scheme discretization for the following equa-
(9-pt) tion on the unit square:

a2 t98 2 (9 4a 2 a -) + u 2 u -- f
+ -- ts± ax ay

with Dirichlet boundary conditions and f chosen so that the exact solution is

U = e sn(-r).

The discretization grid is 63 x 63 giving 3969 equations. The 1,9-pt problem
is the same problem with a 127 x 127 grid.

Problem 8 This problem is a seven point central difference discretization of the following
(7-pt) equation on the unit cube:

y u)+a0(X+Y + Z) U+(40 aa a a au af
'5- -t -5- f7 5ax a 9 aI a+ az aza+ Y + y 4

with Dirichlet boundary conditions and f chosen so that the exact solution is

u = (1 - x)(1 - y)(1 - z)(1 - e-z)(l - e-)(1 - e-').

The discretization grid is 20 x 20 x 20 yielding 8000 equations. Tile 1,7-pt
problem is the same problem with a 30 x 30 x 30 grid.

3.7. Sammary of Preconditioning Results
Table 3 shows the observed iteration counts for unpreconditioned GMRES with are

large number of direction vectors. Table 4 shows the observed iteration counts for the
same problems, using various flavors of incomplete factorization. In particular, the "real-
world" SPE problems (except SPE4) take more than 10 times as many iterations using no
preconditioning as when using incomplete factorizations. Very roughly, this means that
using a tenth-degree polynomial as a preconditioner would give at best a similar iteration
count (note that many of the SPE problems did not converge without preconditioning).
Thus, an incomplete factorization that took as much time as such 10 matrix vector products
would still be competitive and perhaps preferable (because of the better apparent behavior
of incomplete factorizations on a wide range of problems).

It is also important to note that, in contrast, the simple model problems are solved
fairly effect;,ely by GMRES with no preconditioning, and hence polynomial precondition-
ing may be effective for these model problems. Still, we are interested in using a massively
parallel machine for solving large and difficult linear systems, and, as long as the incom-
plete factorization solves can be done with reasonable efficiency, they are a better choice
of preconditioner.

10

Scientific Computing Associates

4. The Importance of Careful Embedding

In Section 3 we described how it was possible to achieve respectable rates of compli-
tation even on iterative loops that inclided a sparse triangular solve. In this sectirm, we
present some benchmarks that yield insight on what is required for achieving this high
performance.

4.1. The Consequences of a Poor Mapping
We have found that 20 to 75 fold performance differences can be observed when we

compared the performance of two versions of a sparse matrix vector multiply program
(Table 5). The problem consisted of sweeps over sparse matrices generated by square
domains of varying sizes with five point templates. The first version is explicitly mapped
onto the machine in a way that allows us to utilize the CM-2's fast NEWS network for local
communication. The other version uses a general router designed to carry out arbitrary
patterns of interprocessor communication. Both versions were programmed in * Lisp and
used the same data structures to represent the sparse matrices. For the 256 by 256 problem
the timings for the explicitly mapped NEWS network code corresponded to a speed of
40.0 MFlops - the timings for the router version of the code achieved a speed of 0.5
MFlops. Note that the cost of computation does not vary significantly with the mapping
and choice of communications method; this consistency provides a reassurance that the
timing differences noted are actually due to communication related costs. The timings
depicted here are averages obtained from 1000 iterations of the matrix vector multiply
code. From this benchmark, it is quite clear that satisfactory performance cannot be
obtained even from the most rudimentary sparse matrix code if one were to map sparse
matrices onto the CM-2 without regard to data dependency patterns.

4.2. The Consequences of a Using the General Router In a Well-Mapped Problem
We next attempt to obtain some rough estimates of the performance we could expect

if we were to write an iterative loop of a Krylov linear solver in a program capable of
mapping reasonably general sparse matrices onto the CM-2. We must assume that the
sparse matrix could arise from a mesh with irregularities. We consequently must use the
general router rather than the NEWS network.

We will present benchmarks that attempt to quantify the effects of using the general
router on a well-mapped problem. This should give us a best case estimate of the per-
formance we might expect from using the general router. We examined the performance
of versions of the PARIS program described in Section 3.2 in which we performed data
fetches or data sends using the general router instead of performing data sends using the
NEWS network. Note that in all of these cases, the problem was mapped so that only
nearest neighbor communications were needed. The timings we obtained with data fetches
carried out using the general router can be interpreted as best case estimates of what one
could expect from a CM-2 executor that did not have access to a-priori information on
dependency patterns. Table 6 depicts the average time per iteration required to solve a
problem over a 64 by 64 by 64 grid. The time was averaged over 100 iterations. Note that
in this case there is a roughly eight-fold performance difference between the optimized
NEWS network program and the version employing the general router fetch instruction.
As we mentioned in Section 3, on the 4K processor machine, the program employing the
NEWS network achieves a speed of 27.14 MFlops on the matrix vector multiply and a

11

Scientific Computing Associntes

Grid News News General General
Size Total Comp Total Comp.

(ms) (ms) (mns) (ms)
64 x 64 2.25 0.93 45.56 0.99

128 x 128 4.62 1.88 189.44 1.89
256 x 256 13.11 5.46 1001.11 5.51

Table 5: Matrix Vector Multiply
Explicitly mapped News Net vs. General Router
4K processors

speed of 6.97 MFlops on the triangular solve. The fetch version of the general router pro-
gram achieves a speed of 3.58 MFlops on the matrix vector multiply and 1.14 MFlops on
the triangular solve.

In Table 7 we compare timings obtained through the use of the NEWS network and
the fetch instruction from the general router for three-dimensional meshes with varying
edge size. We also present the ratio of the fetch timings to the NEWS net timings. For
both the matrix vector multiply and the triangular solve, the ratio between the NEWS net
and router timings remain roughly constant for all meshes with edge size up to 64. The
router timings become relatively less efficient for the mesh with edge size 128. When we
sole this problem with a 128 edge sized mesh, 4 virtual processors are assigned to each
actual processor. As described above, the assignment or multiple virtual proceqsors to each
actual processor can have the effect of reducing communications overhead; less informuation
needs to be exchanged between processors. When the router is used, each virtual processor
must go through the overhead of using the router, even when only sending information to
another virtual processor assigned to the same actual processor.

12

Scientific Computing Associates

Function NEWS Router llou ter
Send Fetch

(nis) (rus) (iuis)

Matrix Vector 116 249 876

Solve 226 374 1376

Total 342 606 2247

Table6: Three-Dimensional Mesh Sweep and Solve

News Net vs. Send and Fetch General Router
4K processors

5. Conclusions

In Section 3, we presented what we might regard as best case timings for the sparse
matrix vector multiplies, sparse triangular solves, and inner products that constitute the
iterative portion of Krylov space linear solvers when the solvers use incompletely factored
matrices for preconditioning. We performed timings for large three-dimensional model
problems over cube-shaped domains discretized with a seven point template. The highest
computational rate we were able to achieve for the sparse triangular solve was 13.1 MFlops
on 4K processors, which would correspond to a timing of 210 MFlops on an appropriately
scaled problem on a 64K processor machine. The highest computational speed we achieved
for'a matrix vector multiply was 64.2 MFlops, which would correspond to to a speed of

1027.0 MFIops in a 64K processor machine. Thus for regularly structured problems, the
CM-2 achieves impressive computational speeds. For all three compute-intensive kernels
the projected speeds on a full 64K processor machine exceed the speeds that can be achieved
by carefully vectorized code on a single head of a Cray X/MP by a factor of at least 5 to
6. T! ,se timings indicate that we can build a preconditioned Krylov space solver which
is both close to optimal with respect to the required number of floating point operations
anti yet performs at a rate of computation far exceeding that of a highly optimized version

running on a single-headed Cray-X/MP.
The timings on the CM-2 were highly dependent on the use of our specialized pro-

grams. These programs mapped the problem domain onto the processor topology very

13

Scientific Computig Associates

Edge MVVM MM MYM Solve Solve Solve
Size NEWS Router Ratio NEWS Roitrr Ratio

(ills) (Ins) ______ (film) (iri.s)
16 29 208 7.2 52 328 6.3
32 57 441 7.7 107 664 6.2
64 116 876 7.6 220 1376 6.1
128 478 4581 9.6 961 7098 7.3

Table 7: Three-D)imensional Mesh Sweep and Solve
News Net vs. General Router-Varying Mesh Size 4K process;ors

carefully and used the optimized local NEWS communications network. We explored tile
consequences of relaxing these restrictions in a variety of ways. Performance degraded
very significantly aq one abandoned the optimized NEWS communications network and
abandoned the careful mapping of a problem domain to the CM-2 processor topology. In
some cases we noted 20 to 75 fold degradations in performance as these constraints were
relaxed.

The results of our benchmarks clearly demonstrate that one can obtain extremely
high performance on Krylov space linear solvers on the CM-2. It appears that it would be
quite feasible to construct a preconditioned Krylov solver capable of solving systems arising
from partial differential equations discretized using one of a fixed set of finite difference
templates and obtain extraordinary performance on the CM-2. Taking into account the
relative performance of such a solver on the CM-2 ani the Cray-X/MP and the relative
prices of these computer systems, an appropriate preconditioned Krylov solver on the CM-
2 would revolutioni - the computational solution of engineering and scientific problems
involving three-dimensional simulations.

14

Scientific Computing .Associates

References

[l E. Anderson, Solvinig Sparse Triangular Linear Systems on Parallel Computers, leport
794, UIUC, June 1988.

121 C. Ashcraft and Roger G. Grimes, On Vectorizing Incomplete Factorization and SS01?
l'reconditioners, Technical Report ETA-TR-41, Boeing Computer Services,
December 1986.

[31 1). Baxter, J. Saltz, M. Schultz, S. Eisentstat and K. Crowley, An Experimental Stuldy
of Methods for Parallel Preconditioned Krylov Methods, J'roceedings of the
1988 Hypercube Multiprocessor Conference, Pasadena CA, Janliary 19R.

[4] I). Baxter and J. Saltz and M. Schultz and S. Eisenstat, P'reconditionied Krylov
Solvers and Methods for Runtime Loop Parallelization, Proceedings of the
4th International Supercomputing Conf., St. Clara, CA, April 1999.

[5] 11. Berryrnan and J. Saltz and W. Gropp, Krylov Methods with Incomplete Factor-
ization I'reconditioners on the CM-2, Submitted to Journal of Parallel and
Distributed Computing, Feb (1989).

161 II. Berryman and W. Gropp and J. Saltz, Krylov Methods and the CM-2, Proceedings
of the 4th International Supercomputing Conf., St. Clara, CA, April 19R9.

[71 Todd I)upont, Richard P. Kendall and II. II. Rachiford Jr., An approxrimate factorization
procedure for solving self-adjoint elliptic difference equations, SIAM Journal
on Numerical Analysis, 5 (1968), pp. 559- 573.

181 If. Ehtnan, Personal Communication, with the authors, University of Maryland, 1988.

[9] J. Saltz, Aggregation Methods for Solving Sparse Triangular Systems on Afiltiproces-
sors, SIAM J. Sci. and Stat. Computation., to appear Sept (1989).

[101 J. A. Meijerink and 11. A. van der Vorst, Guidelines for the usage of incomplete de-
compositions in solving sets of linear equations as occur in practical problems,
Journal of Computational Physics, 44 (1981), pp. 134--155.

[11) , An iterative solution method for linear systems of which the coefficient
matrix is a symmetric M-matrix, Mathematics of Computation, 31(1977),
pp. 148-162.

[12] Herbert L. Stone, Iterative solution of implicit approximations of multidimensional
partial differential equatins, SIAM Journal on Numerical Analysis, 5 (1968),
pp. 530-558.

[13] T. F. Chan and C. C. Kuo and C. Tong, Parallel Elliptic Preconditioner.: Fourier
Analysis and Performance on the Connection Machine, Report CAM 88-22,
UCLA, August 1988.

[141 'Y. Saad, M. Schultz, Parallel Implementations of Preconditioned Conjugate Gradient
M1cthods, Department of Computer Science YAIEU/DCS/Tr-425, Yale
University, October 1985.

15

